

What is Fluency in Maths?

Fluency in maths is about developing number sense and being able to the most appropriate method for the task at hand; to be able to apply a skill to multiple contexts.
The National Curriculum states that pupils should become fluent in the fundamentals of mathematics through varied and frequent practice. While a part of this is about knowing key mathematical facts and recalling them efficiently, fluency means so much more than this as it allows pupils to delve much deeper.

But what are the stages our learners go through in order to become fluent? And how do we decide if a child has attained fluency in a mathematical concept?

Three stages of fluency

1. Simple strategies

Initially, as a child gets to grips with a new skill, they can work out an answer using concrete resources or counting strategies. This will probably help them solve a problem accurately, but it's not the most efficient strategy.

2. Mental calculations

As learners become more proficient with new learning, they reach the second stage of fluency. Learners at this stage can work out an answer in their head. It still requires some thinking and effort as they develop reasoning strategies, but they're well on their way to becoming more efficient.

3. Achieving fluency

Finally, children reach the stage of ' I just knew it'. They can reliably produce accurate answers in an efficient way. This stage often involves using their knowledge flexibly; making connections so that the known can be used to work out the unknown.

How do we know when a learner is fluent?

You can identify a fluent learner when they have a secure understanding of what they're doing and why they're doing it. Fluency is made up of three key parts: efficiency, accuracy and flexibility.
-Efficiency: learners choose efficient strategies and don't get bogged down in too many steps
-Accuracy: learners are accurate in their workings, have great recall of facts and double check their answers
-Flexibility: learners understand that there are many ways to solve a problem
Fluency means that learners can do more than just memorise procedures. To be truly fluent, a child understands the meaning of the operations and their relationships to each other, they have a large knowledge bank of number facts, and a deep understanding of the base ten system.

How we build fluency in the classroom

At Kildwick CE Primary School, each class uses knowledge organisers for their year groups to help direct the teaching of fluency. Teachers provide fluency activities (remembering red) on a daily or weekly basis and ensure there are visual reminders around the classroom to bring it to the forefront of the children's minds.

The relevant knowledge organisers are shared with parents, enabling parents to become involved in learning and have a greater understanding of the expectations in maths for their child. By the end of the year, children should know these facts and the aim is for them to achieve true automaticity so they can recall them instantly.

FS Maths Knowledge Mat

Year 1: Maths Knowledge Mat

Numerals and Number Vocabulary

0	zero	10	ten
1	one	20	twenty
2	two	30	thirty
3	three	40	forty
4	four	50	fifty
5	five	60	sixty
6	six	70	seventy
7	seven	80	eighty
8	eight	90	ninety
9	nine	100	one hundred

Symbols and Vocabulary	
+	plus, add
-	minus, subtract
$=$	is equal to

Odd and Even
Odd numbers end in $1,3,5,7,9$
Even numbers end in 2, 4, 6, 8, 0

Counting		
Count forwards and backwards from any number to and across 100		
Count in 2s 2, 4, 6, 8, 10, 12...		
Count in 5s 5, 10,15, 20, 25, 30...		
Count in 10s 10, 20, 30, 40, $50 \ldots$		
Say the number one more than...		
Say the number one less than...		
Doubles, halves and quarters		
Number	double	quarter
6	12	
7	14	
8	16	2
9	18	
10	20	
Number	half	quarter
12	6	3
14	7	
16	8	4
18	9	
20	10	5

Number bonds within 20	
1	1+0
2	2+0 1+1
3	3+0 2+1
4	$4+0$ 3+1 $2+2$
5	$5+0 \quad 4+13+2$
6	$6+0 \quad 5+1 \quad 4+2 \quad 3+3$
7	$7+0 \quad 6+1 \quad 5+2 \quad 4+3$
8	
9	$9+0 \quad 8+1 \quad 7+2 \quad 6+3 \quad 5+4$
10	$\begin{array}{lllllll}10+0 & 9+1 & 8+2 & 7+3 & 6+4 & 5+5\end{array}$
11	$11+0 \quad 10+1 \quad 9+2 \begin{array}{lllll} & 8+3 & 7+4 & 6+5\end{array}$
12	$12+0 \quad 11+1 \quad 10+2$ 9+3 $\quad 8+4 \quad 7+5 \quad 6+6$
13	$\begin{array}{lllllllllllll}13+0 & 12+1 & 11+2 & 10+3 & 9+4 & 8+5 & 7+6\end{array}$
14	$14+0 \quad 13+1 \quad 12+2 \quad 11+3 \quad 10+4 \quad 9+5 \quad 8+67+7$
15	$\begin{array}{llllllllll}15+0 & 14+1 & 13+2 & 12+3 & 11+4 & 10+5 & 9+6 & 8+7\end{array}$
16	$\begin{array}{lllllllllllll}16+0 & 15+1 & 14+2 & 13+3 & 12+4 & 11+5 & 10+6 & 9+78+8\end{array}$
17	$\begin{array}{cccccccccccc} 17+0 & 16+1 & 15+2 & 14+3 & 13+4 & 12+5 & 11+6 & 10+7 \\ & 9+8 & 8 \end{array}$
18	$\begin{array}{lccccccccccc} 18+0 & 17+1 & 16+2 & 15+3 & 14+4 & 13+5 & 12+6 & 11+7 \\ & & 10+8 \end{array}$
19	$\begin{array}{llllllll} 19+0 & 18+1 & 17+2 & 16+3 & 15+4 & 14+5 & 13+6 & 12+7 \\ & & 11+8 & 10+9 \end{array}$
20	$\begin{array}{ccccccccc} 20+0 & 19+1 & 18+2 & 17+3 & 16+4 & 15+5 & 14+6 & 13+7 \\ & 12+8 & 11+9 & 10+10 \end{array}$

Year 1: Maths Knowledge Mat

Time - Sticky Knowledge

| There are $\mathbf{2 4}$ hours in a day |
| :--- | :--- |
| There are $\mathbf{6 0}$ minutes in an hour |
| There are $\mathbf{6 0}$ seconds in a minute |
| A.M. means in the morning |
| P.M. means in the afternoon |
| O'Clock is when the minute hand points |
| to the 12 and the hour hand points at the |
| hour. |
| Half past is when the minute hand points |
| to the six and the hour hand points past |
| the hour. |

more than.. less than... half full / half empty
quicker / slower
before / after
first / next
today / yesterday
morning / afternoon / evening

Direction and Movement				
Whole turn	Half turn	Quarter turn	Three- quarter turn	

3D Shapes

cylinder

Year 2: Maths Knowledge Mat

Read and write numbers to at least 100 in numerals and in words

0	zero	10	ten
1	one	20	twenty
2	two	30	thirty
3	three	40	forty
4	four	50	fifty
5	five	60	sixty
6	six	70	seventy
7	seven	80	eighty
8	eight	90	ninety 9
nine	100	one hundred	

Symbols and Vocabulary

\mathbf{X}	multiply, times
\div	divide
$\boldsymbol{<}$	is less than
$>$	is greater than
$\mathbf{=}$	is equal to

Counting to ał leasł 100 Count forwards and backwards from any number in steps of 2 Count forwards and backwards from any number in steps of 3
Count forwards and backwards from any number in steps of 5
Count forwards and backwards from any number in steps of 10

Addition and multiplication can be done in any order. Bui subtraction and division can not!

$$
\begin{gathered}
23+11=34 \quad 11+23=34 \\
\hline 3 \times 5=15 \quad 5 \times 3=15 \\
23-11=12 \\
\text { But you can not take } 23 \text { coins } \\
\text { from } 11 \text { coins }
\end{gathered} \begin{gathered}
10 \div 5=2 \quad 5 \div 10=1 / 2
\end{gathered}
$$

Using knowledge of number bonds within 20 (from Year 1) to calculate to at least 100

Examples:
If $3+7=10$ then $30+70=100$
If $6-4=2$ then $60-40=20$

Muliplication Tables			
\mathbf{x}	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{1 0}$
$\mathbf{1}$	2	5	10
$\mathbf{2}$	4	10	20
$\mathbf{3}$	6	15	30
$\mathbf{4}$	8	20	40
$\mathbf{5}$	10	25	50
$\mathbf{6}$	12	30	60
$\mathbf{7}$	14	35	70
$\mathbf{8}$	16	40	80
$\mathbf{9}$	18	45	90
$\mathbf{1 0}$	20	50	100
$\mathbf{1 1}$	22	55	110
$\mathbf{1 2}$	24	60	120

Fractions		
$1 / 2$	a half	
$1 / 4$	a quarter	
$3 / 4$	three quarters	
$1 / 2=$ two quarters		
You can calculate fractions of numbers: $1 / 2$ of 20 is 10.		
This is the same as		
dividing 20 by 2.		

Year 2: Maths Knowledge Mat

Tìme - Sticky Knowledge

There are $\mathbf{2 4}$ hours in a day
There are 60 minutes in an hour and a clock shows these in 5 minute

intervals

Quarter to is when the minute
hand points to the 9 and the hour hand nearly points at the hour.
Quarter past is when the minute
hand points to the three and the hour hand points past just the hour.

Key Vocabulary - Measurement

Metre
Centimetre cm

Kilogram kg

Gram g

Year 3: Maths Knowledge Mat

Year 3: Maths Knowledge Mat

Year 4: Maths Knowledge Mat

Year 4: Maths Knowledge Mat

Time - Sticky Knowledge
Digital and analogue clocks

Both clocks show it is 10 o'clock. But only the digital clock shows that it is pm (in the evening) because it is using 24 hour time.

Symmetry

$\frac{40}{80}=\frac{20}{40}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2} \quad$ So $\frac{40}{80}=0.5$

Area

$=(6 \times 6)+(2 \times 3)$
$=36+$
area of this shape 6
$=42$

Cm^{2} Pach row divides by Each 45 Tens	Ones	\bullet	tenths	hundredihs	
4	5	\bullet	0	0	
$4.5=4 \frac{5}{10}=4 \frac{1}{2}$	0	4	\bullet	5	0
$0.45=\frac{45}{100}$	0	0	\bullet	4	5

Coordinates

Year 5: Maths Knowledge Mat

Year 5: Maths Knowledge Mat

Year 6: Maths Knowledge Mał

Rounding	Multiplying a firaction by a fraction
$\mathbf{8 , 3 7 8 , 5 4 3}$	
To the nearest $\mathbf{1 0 , 0 0 0}$ is	$8,380,000$
To the nearest $\mathbf{1 0 0 , 0 0 0}$ is	$8.40,000$
To the nearest $\mathbf{1 , 0 0 0 , 0 0 0}$ is $8,000,000$	
To the nearest $\mathbf{1 0 , 0 0 0 , 0 0 0}$ is $10,000,000$	$\frac{\mathbf{3} \times \mathbf{6}}{\mathbf{5} \times \mathbf{7}}=\frac{\mathbf{1 8}}{\mathbf{3 5}}$

Calculations with mixed numbers			
Add Mixed	umbers	Subtract Mix	Numbers
$8 \frac{1}{2}+3 \frac{3}{4}$		$8 \frac{1}{2}-4 \frac{3}{4}$	
$=\frac{17}{2}+\frac{15}{4}$	Change to improper fractions	$=\frac{17}{2}-\frac{15}{4}$	Change to improper fractions
$\begin{aligned} & =\frac{17 x^{2}}{2}+\frac{15}{4} \\ & =\frac{34}{4}+\frac{15}{4} \end{aligned}$	Change to common denominator	$\begin{aligned} & =\frac{17 x^{2}}{2}-\frac{15}{4} \\ & =\frac{34}{4}-\frac{15}{4} \end{aligned}$	Change to common denominator
$=\frac{49}{4}$	Add the numerators	$=\frac{19}{4}$	Subtract the numerators
$=12 \frac{1}{4}$	Change to mixed numbers	$=4 \frac{3}{4}$	Change to mixed numbers

Adding fractions
$\frac{1}{2}+\frac{1}{3}=?$
$\frac{1}{2} \times 3=\frac{3}{6} \quad \frac{1}{3} \times 2=\frac{2}{6}$
$\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$

On a calculator 36% of 76 Change to a 0.36×76 decimal and multiply	Increasing Increase £70 by 14\% $\begin{aligned} & 14 \% \text { of } 70=0.14 \times 70=£ 9.80 \\ & \text { New amount }=£ 70+£ 9.80 \\ & =£ 79.80 \end{aligned}$
Fraction to \% $\frac{15}{20}=\frac{75}{100}=75 \%$ Or $15 \div 20 \times 100=75 \%$	Decreasing Decrease $£ 70$ by 14% 14% of $70=0.14 \times 70=£ 9.80$ New amount $=£ 70-£ 9.80$ $=£ 60.20$

Without a calculator	
50% - half	10% - divide by 10
25% - half and half	5% - half 10%
$75 \%-50 \%+25 \%$	20% - double 10\%

BODMAS	Ratio
B \rightarrow Bracket	Ratio
$\mathrm{O} \rightarrow$ Of	compares
D \rightarrow Division	values.
M \rightarrow Multiplication	A ratio says
A \rightarrow Addition	how much of
$S \rightarrow$ Subtraction	one thing there
BODMAS EXAMPLE	is compared to another thing.
$40-\left(5 \times 2^{2}+7\right)$	Ratio 3:1. There are 3 blue
Brackets $1^{\text {st }}$ then use ODMAS inside the brackets	squares to 1 yellow square.
40-($5 \times 4+7) \quad\left(2^{2}\right)$	
40-(20 + 7) (Multiply $5 \times 4)$	
40-27 (Add 20 + 7)	
Answer $=13$	

Year 6: Maths Knowledge Mat

